
'

&

$

%

Message modification, neutral bits and boomerangs

From which round should we start counting in SHA ?

Antoine Joux

DGA

and

University of Versailles St-Quentin-en-Yvelines

France

Joint work with Thomas Peyrin

1



'

&

$

%

Differential cryptanalysis of SHA

• Started in 1998 with SHA-0

• Many improvements starting from 2004:

– Neutral bits technique

– Multi-block collisions

– Message modification techniques

– Non linear differential paths

• In this talk, we focus on:

– Neutral bits

– Message modification

– Boomerang attack

2



'

&

$

%

Overview of the basic attack

3



'

&

$

%

Notations

Notation Definition

Fq Finite field with q elements.

〈X, Y, . . . , Z〉 Concatenation of 32-bits words.

+ Addition on 32-bits words modulo 232.

⊕ Exclusive or on bits or 32-bits words.

∨ Inclusive or on bits or 32-bits words.

∧ Logical and on bits or 32-bits words.

ROL`(X) Rotation by ` bits of a 32-bits word.

Xi The ith bit of 32-bits word X , from the

least significant 0 to the most significant

31.

4



'

&

$

%

Description of SHA

5



'

&

$

%

SHA compression function

Initialization of
D

A(0), B(0), C(0), D(0), E(0)
E

for i = 0 to 79

A(i+1)
=

ADD
“

W (i), ROL5

“

A(i)
”

, f (i)
“

B(i), C(i), D(i)
”

, E(i),K(i)
”

B(i+1)
= A(i)

C(i+1)
= ROL30

“

B(i)
”

D(i+1)
= C(i)

E(i+1)
= D(i)

Output
D

A(0)
+ A(80), B(0)

+ B(80), C(0)
+ C(80), D(0)

+ D(80), E(0)
+ E(80)

E

6



'

&

$

%

Functions f (i)(X,Y, Z), and Constants K(i)

Round i Function f (i) Constant K(i)

Name Definition

0 –19 IF (X ∧ Y ) ∨ (¬X ∧ Z) 0x5A827999

20–39 XOR (X ⊕ Y ⊕ Z) 0x6ED9EBA1

40–59 MAJ (X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z) 0x8F1BBCDC

60–79 XOR (X ⊕ Y ⊕ Z) 0xCA62C1D6

7



'

&

$

%

Expansion of SHA-0

• Input:
〈

W (0), . . . , W (15)
〉

W (i) = W (i−3) ⊕ W (i−8) ⊕ W (i−14) ⊕ W (i−16) . (1)

• Output:
〈

W (0), . . . , W (79)
〉

8



'

&

$

%

Difference with SHA-1

• Slight difference in the expansion:

W (i) = ROL1

(

W (i−3) ⊕ W (i−8) ⊕ W (i−14) ⊕ W (i−16)
)

. (2)

• E0 = (e0)
32 non-interleaved expansion of SHA-0.

• E1 interleaved expansion of SHA-1.

9



'

&

$

%

Linearized version of SHA

• Replace ADD by XOR.

• Replace fi by XOR.

• Then, collision can be found with linear algebra

10



'

&

$

%

Constructing Differential Collisions

11



'

&

$

%

Construction of the Differential Mask

• For SHA-0:

– Find a disturbance-vector
(

m
(0)
0 , . . . , m

(79)
0

)

.

– Apply it on bits 1, in order to obtain perturbative mask

M0 =
〈

M
(−5)
0 , . . . , M

(79)
0

〉

defined by:

∀i, −5 ≤ i ≤ −1, M
(i)
0 = 0

∀i, 0 ≤ i ≤ 79, M
(i)
0,k = 0 if k 6= 1;

∀i, 0 ≤ i ≤ 79, M
(i)
0,1 = m

(i)
0 .

• For SHA-1:

– Directly find the perturbative mask M0

– Use a low weight vector of the expansion E1

– Align many bits (not all) on bit 1

12



'

&

$

%

Corrective Masks

• From M0 derive: M1, . . . , M5:

∀i, −4 ≤ i ≤ 79, M
(i)
1 = ROL5

(

M
(i−1)
0

)

; (3)

∀i, −3 ≤ i ≤ 79, M
(i)
2 = M

(i−2)
0 ; (4)

∀i, −2 ≤ i ≤ 79, M
(i)
3 = ROL30

(

M
(i−3)
0

)

; (5)

∀i, −1 ≤ i ≤ 79, M
(i)
4 = ROL30

(

M
(i−4)
0

)

; (6)

∀i, 0 ≤ i ≤ 79, M
(i)
5 = ROL30

(

M
(i−5)
0

)

; (7)

13



'

&

$

%

Constraints (basic attack on SHA-0)

• m0 must be ended by 5 zeroes.

• Differential mask M defined by

∀i, 0 ≤ i ≤ 79, M (i) = M
(i)
0 ⊕M

(i)
1 ⊕M

(i)
2 ⊕M

(i)
3 ⊕M

(i)
4 ⊕M

(i)
5 ,

(8)

must be an output of E0.

Ensured by:

M
(i)
0 = M

(i−3)
0 ⊕ M

(i−8)
0 ⊕ M

(i−14)
0 ⊕ M

(i−16)
0 , ∀i, 11 ≤ i < 80 .

(9)

14



'

&

$

%

Consequence for linearized model

• There exists 64 error vectors m0 satisfying the constraints.

• There exists 64 masks M : we deduce µ such that M = E0(µ).

• For all input W =
〈

W (0) . . .W (15)
〉

, W ′ = W ⊕ µ has same

output by the linearized compression function.

• With non-negligible probability, also give attack on real SHA

15



'

&

$

%

Application to SHA-0

• A few patterns. Best one m0 with probability 1/261:

00000 00100010000000101111

01100011100000010100

01000100100100111011

00110000111110000000

• Complexity goes down to 256 with neutral bits of Biham and

Chen

16



'

&

$

%

Recent improvements

• Multiblock techniques

• Non linear characteristics

– Non linearity for a few rounds in the first SHA-0 collision

– Non linearity during about 16 rounds in Wang’s et al SHA-1

attack

• Remove a lot of constraints (and improve attacks)

17



'

&

$

%

Evaluating the cost of the attack

• Three important phases:

– Early rounds, where control is possible

– Late rounds, where behavior is probabilistic

– Final rounds, where misbehavior can be partially ignored

• Roughly the complexity arises from the probability of success in

the late rounds (the final rounds being excepted)

• Evaluated by computing the probability of success of each local

collision

18



'

&

$

%

Evaluating the cost of a single local collision

• Disturbance insertion: No carry wanted (pr 1/2)

• A correction: Need opposite sign (pr 1)

• B correction: Disturbance propagates with the right sign (pr 1/2)

• C correction: Disturbance propagates (Bit 31, pr 1 or 1/2)

– Other bits: with the right sign (pr 1/2)

– Possible dependence on D with MAJ

• D correction: Disturbance propagates (Bit 31, pr 1 or 1/2)

– Other bits: with the right sign (pr 1/2)

• E correction: Need opposite sign (pr 1)

19



'

&

$

%

Where do the late rounds start

• In the basic attack, round 16 (or 18 with some care)

• With neutral bits of Biham and Chen, round 23

– Use the fact that some message “bits” changes do not affect

conformance.

– From one candidate message pair, generates many

• With message modifications of Wang et al., round 26

– Use ad’hoc message changes to force conformance in early

rounds

– Much fewer pairs to explore, however each pair costs more

– Wang et al. at first Hash Workshop announced cost 263 + 260.

– Crypto’05 was round 23, cost 2 · 271 pairs, 269 SHA

computations

20



'

&

$

%

Where do the late rounds start

• Can we do better and improve the overall complexity ?

– One track is to improve message modification. For example

Gröbner approach.

– The cost per message pair is potentially high

– Another track is to improve neutral bits.

– Our approach here: Use a variant of the boomerang attack

21



'

&

$

%

Boomerang picture for block ciphers

P1

C1

P ′

1

C ′

1

P2

C2

P ′

2

C ′

2

22



'

&

$

%

Boomerang picture for hash compression

M1

h1 ?

M ′

1

h′

1

M2

h2 ?

M ′

2

h′

2

23



'

&

$

%

Boomerang for hash compression

• Each M , M ′ pair is a partially conformant pair of the main

differential

• Both pairs are related by a high probability auxillary differential

• The auxillary differential preserves conformance in the early

rounds

• Beyond these rounds, the main differential holds (heuristic)

• Each auxillary differential thus doubles the number of

conformant pairs

• Very similar to the neutral bit technique

• Longer range of the conformance preserving property

24



'

&

$

%

Construction of auxillary differentials

• A simple technique is to use collisions on pairs at some

intermediate round

• First example of auxillary differential (experimentally seen in

neutral bits)

– Insert difference in round 6 at bit i

– Correct in round 7 at bit i + 7

– Correct in round 11 at bit i − 2

– Rely on non-linearity for other correction

• With a well-chosen message pair, collision in round 12

• No more (auxillary) difference up to round 19

• Conformance to the main differential continues for a few

additional rounds

25



'

&

$

%

An auxillary differential with pairwise collision up

to round 26

• Found by simple search on bits i − 2, i and i + 5

• Contains 5 local collision patterns

• Collision in round 16, no more difference up to round 26

Bit i 0 4 6 8 10

Bit i + 5 1 5 7 9 11

Bit i

Bit i − 2

Bit i − 2 8 10 14

Bit i − 2 5 9 11 13 15

26



'

&

$

%

Associated constraints in initial pair

M
(0)
i

= a M
(4)
i

= b M
(6)
i

= c M
(8)
i

= d M
(10)
i

= e

A
(1)
i

= a A
(5)
i

= b A
(7)
i

= c A
(9)
i

= d A
(11)
i

= e

M
(1)
i+5 = ā M

(5)
i+5 = b̄ M

(7)
i+5 = c̄ M

(9)
i+5 = d̄ M

(11)
i+5 = ē

A
(0)
i+2 = A

(−1)
i+2 A

(4)
i+2 = A

(3)
i+2 A

(6)
i+2 = A

(5)
i+2 A

(8)
i+2 = A

(7)
i+2 A

(10)
i+2 = A

(9)
i+2

A
(2)
i−2 = 0 A

(6)
i−2 = 0 A

(8)
i−2 = 0 A

(10)
i−2 = 0 A

(12)
i−2 = 0

A
(3)
i−2 = 1 A

(7)
i−2 = 0 A

(9)
i−2 = 0 A

(11)
i−2 = 1 A

(13)
i−2 = 0

M
(8)
i−2 = b̄ M

(10)
i−2 = c̄ M

(14)
i−2 = ē

M
(5)
i−2 = ā M

(9)
i−2 = b̄ M

(11)
i−2 = c̄ M

(13)
i−2 = d̄ M

(15)
i−2 = ē

27



'

&

$

%

An auxillary differential with pairwise collision up

to round 24

• Contains 4 local collision patterns

• Collision in round 14, no more difference up to round 24

Bit i 2 4 6 8

Bit i + 5 3 5 7 9

Bit i − 2 5 7 9

Bit i − 2 6 8 12

Bit i − 2 7 9 11 13

28



'

&

$

%

Associated constraints in initial pair

M
(2)
i = a M

(4)
i = b M

(6)
i = c M

(8)
i = e

A
(3)
i = a A

(5)
i = b A

(7)
i = c A

(9)
i = d

M
(3)
i+5 = ā M

(5)
i+5 = b̄ M

(7)
i+5 = c̄ M

(9)
i+5 = d̄

A
(2)
i+2 = A

(1)
i+2 A

(4)
i+2 = A

(3)
i+2 A

(6)
i+2 = A

(5)
i+2 A

(8)
i+2 = A

(7)
i+2

A
(4)
i−2 = 1 A

(6)
i−2 = 1 A

(8)
i−2 = 1 A

(10)
i−2 = 0

A
(5)
i−2 = 0 A

(7)
i−2 = 0 A

(9)
i−2 = 1 A

(11)
i−2 = 0

M
(7)
i−2 = ā M

(9)
i−2 = b̄ M

(11)
i−2 = c̄ M

(13)
i−2 = d̄

29



'

&

$

%

Ongoing work

• Depending on bit position induces conformance up to round 28,

29 or more

• No high message modification cost

• Compatible with the neutral bit technique

• Technical difficulties:

– Build a non-linear characteristic compatible with enough

auxillary characteristics

∗ Useful tool: see talk of De Cannière and Rechberger

– Combine with simple message modification

• Expected result: SHA-1 weaker today than SHA-0 in 1998

30



'

&

$

%

A safety measure for collision builders

• Sooner or later a SHA-1 collision will be produced

• This will be an important milestone for hash functions

• Yet it would be nice to minimize bad consequences

• Proposed safety measure:

– Change the IV while keeping true SHA-1

– For this, prepend a long enough, publicly announced, string

– Two simple possibilities:

∗ Prepend 1Gbyte of zeroes

∗ Prepend 1Gbyte of binary expansion of π, e,
√

2, . . .

31



'

&

$

%

Conclusion

Questions

32


